Enhancement of Arsenic Trioxide-Mediated Changes in Human Induced Pluripotent Stem Cells (IPS)
نویسندگان
چکیده
Induced pluripotent stem cells (IPS) are an artificially derived type of pluripotent stem cell, showing many of the same characteristics as natural pluripotent stem cells. IPS are a hopeful therapeutic model; however there is a critical need to determine their response to environmental toxins. Effects of arsenic on cells have been studied extensively; however, its effect on IPS is yet to be elucidated. Arsenic trioxide (ATO) has been shown to inhibit cell proliferation, induce apoptosis and genotoxicity in many cells. Based on ATOs action in other cells, we hypothesize that it will induce alterations in morphology, inhibit cell viability and induce a genotoxic effect on IPS. Cells were treated for 24 hours with ATO (0-9 µg/mL). Cell morphology, viability and DNA damage were documented. Results indicated sufficient changes in morphology of cell colonies mainly in cell ability to maintain grouping and ability to remain adherent. Cell viability decreased in a dose dependent manner. There were significant increases in tail length and moment as well as destruction of intact DNA as concentration increased. Exposure to ATO resulted in a reproducible dose dependent sequence of events marked by changes in morphology, decrease of cell viability, and induction of genotoxicity in IPS.
منابع مشابه
A Study of Cytogenetic Stability of Induced Pluripotent Stem Cells Using Karyotyping and Comet Assay Techniques
Background & Aims: Induced pluripotent stem cells (iPSCs) have the capability to undergo unlimited selfrenewal and differentiation into all cell types in the body. These cells are artificially derived from a nonpluripotent cell, typically human dermal fibroblasts (HDFs). The study of cytogenetic stability of these cells, in order to use iPS cells and apply studies in therapeutic applications, i...
متن کاملسلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کاملInduced Pluripotent Stem Cells: Challenges and Opportunities
Regenerative capacity of mammals is limited and can rarely regenerate a specific organ or tissue fully. Due to these limitations, regenerative medicine seeks efficient and safe cell sources for regeneration of damaged tissues and organs or treatment for incurable diseases. Human embryonic stem cells (HESCs) hold two important properties called self renewal and pluripotency. However, the use of ...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملI-5: Fifteen Years after Dolly: The Perspectives on Cellular Reprogramming
s:1202:"It is a truly amazing time to developmental biology. During recent decades, three important breakthroughs have been developed: (i) isolation of stem cells from embryo, (ii) animal cloning by nuclear transfer (NT), and (iii) and induced pluripotent stem cells (iPS). Considering these three approaches of "Cellular Reprogramming", it seems that the required elements for cell therapy now ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2014